Sind der Mittelpunkt eine Ellipse und ihre Hauptachse parallel zur Achse der Abszissen (Achse ), besitzen die Brennpunkte die Koordinaten und . Die Ellipsengleichung lautet

ellipsengleichungen-abbildung-1
Abbildung 1: Ellipse im Koordinatensystem

mit der entsprechenden großen und kleinen Halbachse und .

Durch Auflösen der Nenner und Vereinfachen der Gleichung erhält man in der Regel die Form:

und haben dabei dasselbe Vorzeichen. Diese Formel nennt man auch allgemeine Gleichung für Kegelschnitte.

Beispiele

1

Stelle die Ellipsengleichung mit Brennpunkt , Scheitelpunkt und Mittelpunkt auf.

Lösung

Zunächst ist festzustellen, dass die Hauptachse parallel zur Abszissenachse verläuft, was wir anhand des Mittelpunkts und eines der Brennpunkte feststellen können; beachte, dass der Brennpunkt rechts vom Mittelpunkt der Ellipse liegt. Dadurch erhalten wir vorerst die Gleichung

Wir wissen, dass für die größere Halbachse steht. Die größere Halbachse ist gleich dem Abstand zwischen Mittelpunkt und Scheitelpunkt.

Außerdem wissen wir, dass für die kleine Halbachse gilt, wobei den Abstand vom Mittelpunkt der Ellipse zum Brennpunkt ist, das heißt

Somit ist

Wir erhalten die Gleichung

2

Gegeben sei eine Ellipse mit der Gleichung

Ermittle ihren Mittelpunkt, Halbachsen, Scheitelpunkte und Brennpunkte.

Lösung

An der Ellipsengleichung lässt sich ablesen, dass der Mittelpunkt ist.

Um die Halbachsen zu finden, stellen wir fest, dass wir aus und , also erhalten. ist die größere Halbachse, da der Wert größer als der von ist. Im Umkehrschluss ist die kleine Halbachse.

Da die größere Halbachse darstellt und der Teiler des Ausdrucks ist, ist die große Halbachse parallel zur Abszissenachse. Damit liegt der Scheitelpunkt Einheiten rechts und Einheiten links des Mittelpunkts. Die Scheitelpunkte sind also und .

Als Letztes müssen die Brennpunkte gefunden werden. Die Hälfte der Brennweite (Abstand vom Mittelpunkt zu jedem der Brennpunkte) wird mit ausgedrückt und erfüllt . Man erhält also

.

Man erhält und die Brennpunkte und .

Unsere besten verfügbaren Mathematik-Lehrer
Gregor
5
5 (60 Bewertungen)
Gregor
47€
/h
Gift icon
1. Unterrichtsstunde gratis!
Sebastian
5
5 (136 Bewertungen)
Sebastian
60€
/h
Gift icon
1. Unterrichtsstunde gratis!
Rafael
5
5 (104 Bewertungen)
Rafael
80€
/h
Gift icon
1. Unterrichtsstunde gratis!
Benjamin
5
5 (30 Bewertungen)
Benjamin
35€
/h
Gift icon
1. Unterrichtsstunde gratis!
Peter
5
5 (93 Bewertungen)
Peter
105€
/h
Gift icon
1. Unterrichtsstunde gratis!
Elisabeth
5
5 (58 Bewertungen)
Elisabeth
34€
/h
Gift icon
1. Unterrichtsstunde gratis!
Andrea
5
5 (77 Bewertungen)
Andrea
80€
/h
Gift icon
1. Unterrichtsstunde gratis!
Adam
5
5 (93 Bewertungen)
Adam
40€
/h
Gift icon
1. Unterrichtsstunde gratis!
Gregor
5
5 (60 Bewertungen)
Gregor
47€
/h
Gift icon
1. Unterrichtsstunde gratis!
Sebastian
5
5 (136 Bewertungen)
Sebastian
60€
/h
Gift icon
1. Unterrichtsstunde gratis!
Rafael
5
5 (104 Bewertungen)
Rafael
80€
/h
Gift icon
1. Unterrichtsstunde gratis!
Benjamin
5
5 (30 Bewertungen)
Benjamin
35€
/h
Gift icon
1. Unterrichtsstunde gratis!
Peter
5
5 (93 Bewertungen)
Peter
105€
/h
Gift icon
1. Unterrichtsstunde gratis!
Elisabeth
5
5 (58 Bewertungen)
Elisabeth
34€
/h
Gift icon
1. Unterrichtsstunde gratis!
Andrea
5
5 (77 Bewertungen)
Andrea
80€
/h
Gift icon
1. Unterrichtsstunde gratis!
Adam
5
5 (93 Bewertungen)
Adam
40€
/h
Gift icon
1. Unterrichtsstunde gratis!
Los geht's

Ellipse in 1. Hauptlage

Wir nehmen den Mittelpunkt der Koordinaten als Mittelpunkt der Ellipse und die Koordinatenachsen als Achsen der Ellipse. Die Koordinaten der Brennpunkte sind:

ellipsengleichungen-abbildung-2
Abbildung 2: Ellipse im Koordinatensystem

und . Außerdem trifft auf jeden beliebigen Punkt

auf der Ellipse zu, dass

.

Man erkennt, dass dieser Ausdruck gleichwertig zu

ist.

Durch Vereinfachen und Auflösen, erhält man

.

mit , wie auf der vorherigen Grafik zu sehen ist.

Beispiel:

1

Finde die charakteristischen Elemente und die Ellipsengleichung für die Ellipse in 1. Hauptlage mit den Brennpunkten: , und großer Halbachse .

Lösung

Zu unserer Aufgabe gehört folgende Grafik

ellipsengleichungen-abbildung-3

Man sieht, dass der Mittelpunkt der Ellipse auch der Mittelpunkt der beiden Brennpunkte ist, das heißt

Die Brennpunkte liegen auf der Abszissenachse, folglich liegt dort auch die große Halbachse. ist die Hälfte der großen Halbachse, d.h. mit als große Halbachse.

Die Hälfte der Brennweite ist gleich dem Abstand von den Brennpunkten zum Mittelpunkt der Ellipse .

Zuletzt findet man die kleine Halbachse anhand der großen Halbachse und , wenn für die kleine Halbachse zutrifft:

Man erhält . Unsere Ellipsengleichung ist daher

.

Ellipse in 2. Hauptlage

ellipsengleichungen-abbildung-4
Abbildung 4: Ellipse im Koordinatensystem

Wenn die Hauptachse auf der y-Achse des Koordinatensystems verläuft, folgt die Berechnung dieser Gleichung:

Die Koordinaten der Brennpunkte sind y .

Beispiel

1

Gegegeben ist die Ellipsengleichung

Finde die Koordinaten der Scheitelpunkte, der Brennpunkte und die Exzentrität der Ellipse (= Abstand des Brennpunktes zum Mittelpunkt)

Lösung

Ermittle zuerst die Hälfte der Brennweite. Die Hälfte der Brennweite wird mit bezeichnet und es gilt , das heißt

,

Somit ist . Aus diesem Wert können wir schließen, dass die Brennpunkte die Koordinaten und haben.

Um die Scheitelpunkte zu ermitteln, erinnere dich daran, dass diese sich a Einheiten über und unter dem Mittelpunkt der Ellipse befinden, das heißt für erhält man die Scheitelpunkte und .

Die Exzentrität der Ellipse ist gleich

.

Hauptachsentransformation

ellipsengleichungen-abbildung-5
Abbildung 5: Ellipse im Koordinatensystem

Wenn der Mittelpunkt einer Ellipse ist (sei er der Ursprungspunkt oder nicht) und die Hauptachse parallel zur y-Achse des Koordinatensystems verläuft, haben die Brennpunkte die Koordinaten und und die Ellipsengleichung ist:

Beispiele

1

Schreibe dir folgenden Gleichungen in die allgemeine Kegelschnittgleichung (oder die allgemeine Ellipsengleichung) um und ermittle die Koordinaten ihrer Brennpunkte, Scheitelpunkte sowie ihre Exzentrität und stelle sie grafisch dar.

a.

b.

c.

d.

Lösung

a.

Um die Ellipsengleichung zu erhalten, müssen die grundlegenden Regeln der Algebra angewandt werden

Die letzte Gleichung enspricht bereits in ihrer Form der Ellipsengleichung. An ihr lässt sich ablesen, dass der Mittelpunkt der Ellipse ist.

Man erkennt ebenso, dass die große Halbachse ist und die kleine Halbachse . Da die große Halbachse den Term der teilt, muss die Hauptachse der Ellipse parallel zur Abszissenachse liegen. Die Scheitelpunkte liegen daher Einheiten rechts und links vom Mittelpunkt der Ellipse und haben die Koordinaten und .

Um die Brennpunkte zu erhalten, muss die Hälfte der Brennweite berechnet werden, für die gilt , d.h. wir erhalten

Folglich ist . Die Brennpunkte liegen Einheiten links und rechts des Mittelpunkts der Ellipse und haben daher die Koordinaten und .

Die Exzentrität ist durch

gegeben.

Die grafische Darstellung der Ellipse sieht wie folgt aus:

ellipsengleichungen-abbildung-6

b.

Um die Ellipsengleichung zu erhalten, müssen die grundlegenden Regeln der Algebra angewandt werden

Die letzte Gleichung enspricht bereits in ihrer Form der Ellipsengleichung. Anhand der Gleichung lässt sich erkennen, dass der Mittelpunkt der Ellipse bei liegt.

Aus der Gleichung lässt sich auch ablesen, dass die große Halbachse und die kleine Halbachse ist. Da die große Halbachse den Term der teilt, muss die Hauptachse der Ellipse parallel zur Koordinatenachse liegen. Die Scheitelpunkte liegen daher Einheiten rechts und links vom Mittelpunkt der Ellipse und haben die Koordinaten und .

Um die Brennpunkte zu erhalten, muss die Hälfte der Brennweite berechnet werden, für die gilt , d.h. wir erhalten

Aus der letzten Gleichung ergibt sich . Die Brennpunkte liegen Einheiten links und rechts des Mittelpunkts der Ellipse und haben daher die Koordinaten und .

Die Exzentrität ist durch

Die grafische Darstellung der Ellipse sieht wie folgt aus:

ellipsengleichungen-abbildung-7

c.

Um die Ellipsengleichung zu erhalten, müssen die grundlegenden Regeln der Algebra angewandt werden

Die letzte Gleichung enspricht bereits in ihrer Form der Ellipsengleichung. Anhand der Gleichung lässt sich erkennen, dass der Mittelpunkt der Ellipse bei liegt.

Aus der Gleichung lässt sich auch ablesen, dass die große Halbachse und die kleine Halbachse ist. Da die große Halbachse den Term der teilt, muss die Hauptachse der Ellipse parallel zur Abszissenachse liegen. Daraus lässt sich schließen, dass die Scheitelpunkte Einheiten rechts und links vom Mittelpunkt der Ellipse liegen und die Koordinaten und besitzen.

Um die Brennpunkte zu erhalten, muss die Hälfte der Brennweite berechnet werden, für die gilt , d.h. wir erhalten

Aus der letzten Gleichung ergibt sich . Die Brennpunkte liegen Einheiten links und rechts des Mittelpunkts der Ellipse und haben daher die Koordinaten und .

Die Exzentrität ist durch

Die grafische Darstellung der Ellipse sieht wie folgt aus:

ellipsengleichungen-abbildung-8

d.

Um die Ellipsengleichung zu erhalten, müssen die grundlegenden Regeln der Algebra angewandt werden

Die letzte Gleichung enspricht bereits in ihrer Form der Ellipsengleichung. An ihr lässt sich ablesen, dass der Mittelpunkt der Ellipse ist.

Man erkennt ebenso, dass die große Halbachse ist und die kleine Halbachse . Da die große Halbachse den Term der teilt, muss die Hauptachse der Ellipse parallel zur Koordinatenachse liegen. Die Scheitelpunkte liegen daher Einheiten rechts und links vom Mittelpunkt der Ellipse und haben die Koordinaten und .

Um die Brennpunkte zu erhalten, muss die Hälfte der Brennweite berechnet werden, für die gilt , d.h. wir erhalten

Aus der letzten Gleichung ergibt sich . Die Brennpunkte liegen Einheiten links und rechts des Mittelpunkts der Ellipse und haben daher die Koordinaten y .

Die Exzentrität ist durch

Die grafische Darstellung der Ellipse sieht wie folgt aus:

ellipsengleichungen-abbildung-9

 

2

Stelle die Ellipsengleichung anhand der folgenden Vorgaben auf:

a.
b.
c.
d.

Lösung

a.

Beim Lösen der Gleichung fällt auf, dass man den Abstand zwischen Brennpunkt und Mittelpunkt (=die Hälfte der Brennweite) leicht mit dem Wert ablesen kann. Auch die große Halbachse ist leicht zu erhalten, da sie aus dem Abstand von Scheitelpunkt und Mittelpunkt gebildet wird und folglich ist. Zuletzt kann die kleine Halbachse auf Basis der großen Halbachse und der Brennweite bestimmt werden, da gilt, das heißt

Folglich ist . Wenn die Brennpunkte rechts und links des Mittelpunkts der Ellipse liegen, wird der Term, der enthält durch das Quadrat der großen Halbachse geteilt. Andersherum wird durch das Quadrat der großen Halbachse geteilt, wenn die Brennpunkte über und unter dem Mittelpunkt liegen. Unsere Gleichung ist

.

b.

Beim Lösen der Gleichung fällt auf, dass man den Abstand zwischen Brennpunkt und Mittelpunkt (=die Hälfte der Brennweite) leicht mit dem Wert ablesen kann. Auch die große Halbachse ist leicht zu erhalten, da sie aus dem Abstand von Scheitelpunkt und Mittelpunkt gebildet wird und folglich ist. Zuletzt kann die kleine Halbachse auf Basis der großen Halbachse und der Brennweite bestimmt werden, da gilt, das heißt

Folglich ist . Wenn die Brennpunkte rechts und links des Mittelpunkts der Ellipse liegen, wird der Term, der enthält durch das Quadrat der großen Halbachse geteilt. Andersherum wird durch das Quadrat der großen Halbachse geteilt, wenn die Brennpunkte über und unter dem Mittelpunkt liegen. Unsere Gleichung ist

.

c.

Beim Lösen der Gleichung fällt auf, dass man den Abstand zwischen Brennpunkt und Mittelpunkt (=die Hälfte der Brennweite) leicht mit dem Wert ablesen kann. Auch die große Halbachse ist leicht zu erhalten, da sie aus dem Abstand von Scheitelpunkt und Mittelpunkt gebildet wird und folglich ist. Zuletzt kann die kleine Halbachse auf Basis der großen Halbachse und der Brennweite bestimmt werden, da gilt, das heißt

Folglich ist . Wenn die Brennpunkte rechts und links des Mittelpunkts der Ellipse liegen, wird der Term, der enthält durch das Quadrat der großen Halbachse geteilt. Andersherum wird durch das Quadrat der großen Halbachse geteilt, wenn die Brennpunkte über und unter dem Mittelpunkt liegen. Unsere Gleichung ist

.

d.

Beim Lösen der Gleichung fällt auf, dass man den Abstand zwischen Brennpunkt und Mittelpunkt (=die Hälfte der Brennweite) leicht mit dem Wert ablesen kann. Auch die große Halbachse ist leicht zu erhalten, da sie aus dem Abstand von Scheitelpunkt und Mittelpunkt gebildet wird und folglich ist. Zuletzt kann die kleine Halbachse auf Basis der großen Halbachse und der Brennweite bestimmt werden, da gilt, das heißt

Folglich ist . Wenn die Brennpunkte rechts und links des Mittelpunkts der Ellipse liegen, wird der Term, der enthält durch das Quadrat der großen Halbachse geteilt. Andersherum wird durch das Quadrat der großen Halbachse geteilt, wenn die Brennpunkte über und unter dem Mittelpunkt liegen. Unsere Gleichung ist

.

3

Stelle die Ellipsengleichung für eine Ellipse auf, die durch den Punkt verläuft, deren Mittelpunkt gleich dem Ursprungspunkt ist und deren kleine Halbachse parallel zur Koordinatenachse verläuft und misst.

Lösung

Die Tatsache, dass die kleine Halbachse misst, lässt schließen, dass ist. Die Ellipse verläuft durch den Punkt , das heißt für und ist die Ellipsengleichung gültig. Beim Einsetzen dieses Punktes und des Werts von muss nur nach aufgelöst werden

Unsere Gleichung ist

4

Wir wissen, dass der Mittelpunkt einer Ellipse im Ursprungspunkt liegt und die Hälfte ihrer Brennweite beträgt. Ein Punkt der Ellipse ist von ihren Brennpunkten 2 und 6 Einheiten entfernt. Stelle die Ellipsengleichung dieser Ellipse auf und nimm dabei an, dass ihre große Halbachse entlang der Koordinatenachse verläuft.

Lösung

Die Tatsache, dass die Hälfte der Brennweite beträgt, lässt uns schließen, dass , also ist. Die Summe der Abstände der Brennpunkte zu einem Punkt auf der Ellipse beträgt immer , folglich ist

Anhand von und lässt sich nun auch berechnen

Da sich die große Halbachse auf der Koordinatenachse befindet, ist für die Gleichung folgendes gegeben

5

Stelle die Ellipsengleichung für eine Ellipse auf, derenBrennweite beträgt und deren einbeschriebenes Rechteck einen Flächeninhalt von aufweist. Die große Halbachse der Ellipse verläuft parallel zur Abszissenachse.

Lösung

Analysiere zuerst die Daten, die bereits gegeben sind: die Brennweite ist , das heißt und folglich ist .

Die Fläche des einbeschriebenen Rechtecks misst und ist gleich dem Produkt aus kleiner und großer Halbachse, da diese den Seitenlängen des Rechtecks entsprechen. Die große Halbachse misst und die kleine Halbachse , woraus sich ergibt. Nun kann man mithilfe des Einsatzverfahrens nach einer Variablen auflösen. Wir lösen nach auf: .

Wir kennen ebenso die Beziehung und kennen bereits den Wert von und von . Durch Einsetzen dieser beiden Werte in die erste Gleichung erhalten wir den Wert von .

Die Wurzeln des ermittelten Polynoms sind . Da eine reelle positive Zahl sein muss, ist die einzig mögliche Lösung . Durch Einsetzen dieser Werte in die erste Gleichung erhalten wir den Wert von . Diesen setzen wir in die Gleichung ein und erhalten . Da die Werte der Halbachsen schon feststehen, stellen wir nun die Gleichung auf. Die Hauptachse der Ellipse liegt auf der Abszissenachse, daher muss der Wert, der die erhält durch das Quadrat der großen Halbachse geteilt werden

6

Stelle die Ellipsengleichung für eine Ellipse auf, in der einer der beiden Scheitelpunkte einheiten vom einen Brennpunkt und vom anderen entfernt ist. Der Einfachheit halber nehmen wir an, dass der Mittelpunkt gleich dem Ursprungspunkt der Ellipse ist und dass ihre große Halbachse auf der Abszissenachse verläuft.

Lösung

Die folgende Garfik hilft uns, die genannten Abstände besser zu verstehen und wie man basierend darauf und berechnen kann, um schließlich zu erhalten.

ellipsengleichungen-abbildung-10

Der Abstand vom Scheitelpunkt zum entferntesten Brennpunkt beträgt , während der kürzeste Abstand beträgt. Zieht man den kleineren Abstand zum Brennpunkt vom größeren ab, erhält man die Brennweite, das heißt , bzw. . Addiert man zum Abstand des Scheitelpunkts zum entferntesten Brennpunkt den Abstand zum naheliegendsten Brennpunkt, erhält man den Abstand eines Scheitelpunkts vom anderen: , bzw. . Anhand dieser Werte kann das Quadrat der kleinen Halbachse berechnet werden, da

.

Unsere Gleichung ist also

.

7

Stelle die Ellipsengleichung für eine Ellipse auf, die durch den Punkt verläuft und deren Exzentizität ist. Der Einfachheit halber nehmen wir an, dass der Mittelpunkt gleich dem Ursprungspunkt der Ellipse ist und dass ihre große Halbachse auf der Abszissenachse verläuft.

Lösung

Die Exzentrizität ist . Vereinfache die Gleichung und du erhältst . Da die Ellipse durch den Punkt verläuft, erhalten wir für diesen Wert ein Ergebnis der Ellipsengleichung

Wir haben bereits den Wert von und ermittelt und wissen außerdem . Setze die Werte von und ein, um zu erhalten.

Unsere Gleichung ist

Du findest diesen Artikel toll? Vergib eine Note!

4,00 (3 Note(n))
Loading...
Melanie S

Melanie

Als begeistertes Fremdsprachentalent bringe ich die Lernartikel von echten Lehr-Profis logisch und verständlich ins Deutsche, damit du als Schüler bei Superprof deine Kenntnisse verbessern und neu Gelerntes praktisch anwenden kannst.