Unsere besten verfügbaren Mathematik-Lehrer
Gregor
5
5 (70 Bewertungen)
Gregor
55€
/h
Gift icon
1. Unterrichtsstunde gratis!
Justin
5
5 (25 Bewertungen)
Justin
40€
/h
Gift icon
1. Unterrichtsstunde gratis!
Sebastian
5
5 (140 Bewertungen)
Sebastian
60€
/h
Gift icon
1. Unterrichtsstunde gratis!
Rafael
5
5 (104 Bewertungen)
Rafael
80€
/h
Gift icon
1. Unterrichtsstunde gratis!
Benjamin
5
5 (30 Bewertungen)
Benjamin
35€
/h
Gift icon
1. Unterrichtsstunde gratis!
Lennart
5
5 (28 Bewertungen)
Lennart
50€
/h
Gift icon
1. Unterrichtsstunde gratis!
Peter
5
5 (93 Bewertungen)
Peter
105€
/h
Gift icon
1. Unterrichtsstunde gratis!
Elisabeth
5
5 (58 Bewertungen)
Elisabeth
34€
/h
Gift icon
1. Unterrichtsstunde gratis!
Gregor
5
5 (70 Bewertungen)
Gregor
55€
/h
Gift icon
1. Unterrichtsstunde gratis!
Justin
5
5 (25 Bewertungen)
Justin
40€
/h
Gift icon
1. Unterrichtsstunde gratis!
Sebastian
5
5 (140 Bewertungen)
Sebastian
60€
/h
Gift icon
1. Unterrichtsstunde gratis!
Rafael
5
5 (104 Bewertungen)
Rafael
80€
/h
Gift icon
1. Unterrichtsstunde gratis!
Benjamin
5
5 (30 Bewertungen)
Benjamin
35€
/h
Gift icon
1. Unterrichtsstunde gratis!
Lennart
5
5 (28 Bewertungen)
Lennart
50€
/h
Gift icon
1. Unterrichtsstunde gratis!
Peter
5
5 (93 Bewertungen)
Peter
105€
/h
Gift icon
1. Unterrichtsstunde gratis!
Elisabeth
5
5 (58 Bewertungen)
Elisabeth
34€
/h
Gift icon
1. Unterrichtsstunde gratis!
Los geht's

Logarithmusgleichung

Bei Logarithmusgleichungen steht die Unbekannte in irgendeiner Form in Verbindung mit einem Logarithmus.

Bevor wir eine Logarithmusgleichung lösen, müssen wir die Regeln zum Umgang mit Logarithmen kennen.

Regeln

1

2

3

4

5

6

Außerdem müssen wir die Lösungen überprüfen, um zu kontrollieren, dass wir nicht den Logarithmus einer negativen Zahl oder Null erhalten. Dies passiert häufig bei Logarithmen, die einen Ausdruck zweiten Grades enthalten.

Beispiele zur Lösung von Logarithmusgleichungen

Löse die folgenden Logarithmusgleichungen

1

Um diese Gleichung zu lösen, müssen wir nur Regel anwenden (Definition des Logarithmus):

 

2

Wir wenden zunächst Regel an, dann Regel und erhalten so:

 

3

Wir wenden Regel 1 an, danach bestimmen wir die Variable

Beim ersten Term wenden wir den Logarithmus eines Produkts an, beim zweiten die Regel vom Logarithmus einer Potenz.

4 Mithilfe der Logarithmusregeln können wir die Logarithmen der Gleichung zusammenfassen. Auf der linken Seite der Gleichung wenden wir Regel an, auf der rechten Seite der Gleichung wenden wir Regel an:

Sobald sich auf jeder Seite der Gleichung nur noch ein Logarithmus befindet, dürfen wir wie folgt gleichsetzen (Numerivergleich):

Wir lösen die Gleichung:

 

5

Den Nenner des Bruchs mit der rechten Seite der Gleichung multiplizieren:

Wir wenden Regel an und setzen gleich:

Wir lösen die Gleichung:

         

In diesem Fall müssen wir überprüfen, ob eine der Lösungen der Logarithmus einer negativen Zahl ist:

Wir verwenden :

Im Nenner erhalten wir:

Wir erhalten den Logarithmus einer negativen Zahl. Dies stellt eine Scheinlösung dar, da der Logarithmus einer negativen Zahl nicht berechnet werden kann. Deshalb ergibt sich als Lösung für die Gleichung .

Du findest diesen Artikel toll? Vergib eine Note!

4,00 (5 Note(n))
Loading...

Katrin S.

Ich bin staatlich geprüfte Übersetzerin & Dolmetscherin mit den Arbeitssprachen Englisch, Spanisch, Deutsch. Meine Ausbildung habe ich am SDI München mit dem Fachgebiet Technik abvsolviert und übersetze hauptsächlich im technischen sowie mathematisch-naturwissenschaftlichen Bereich. Bei Superprof darf ich die Mathe-Expert*innen unterstützen, indem ich ihre Artikel ins Deutsche übersetze.